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Convective-radiative heat transfer in an enclosure having finite thickness heat-conducting walls at local
heating at the bottom of the cavity has been numerically studied. Heat exchange with an environment
due to convection and radiation has been considered on one of external sides of the decision region.
The effect of parameters such as the Grashof number, the transient factor, the optical thickness and
the solid wall thermal conductivity both on the local thermo-hydrodynamic characteristics such as
streamlines and temperature fields and on the integral parameter like the average Nusselt number on
the heat source surface has been analysed.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

There are many researches devoted to natural convection in
enclosures [1–6]. The typical thermo-hydrodynamic modes
describing formation and evolution of vortex structures and also
dynamics of temperature fields were evolved. The theoretical sub-
stantiation of many experimental results was made. But practically
the investigations of interference of natural convection in a fluid
and heat conduction in a solid have a success [7,8]. The conjugate
heat transfer problems concern both to building thermal physics
[9] and to microelectronics [10,11]. There are few solutions of such
problems [11–15]. The effects of wall heat conduction on natural
convection in a two-dimensional square cavity having finite wall
conductances in which air was used as the working fluid were
experimentally and numerically investigated [12]. The results were
obtained for a case of two isothermal and two adiabatic walls with-
out taking possible convective heat exchange with an environment
into account. Natural convection in open cavities with a discrete
heater located on a vertical wall of finite thickness was numerically
studied [11]. The optimum position of a discrete heater was ascer-
tained to depend on the Rayleigh number, the thermal conductiv-
ity ratio of the wall, the aspect ratio of the cavity and the wall
thickness. The essential effect of walls thickness on thermo-hydro-
dynamic parameters both in a square enclosure [13] and in a semi-
circular cavity [14] was revealed. Experimental measurements and
numerical simulations of turbulent Rayleigh–Bénard convection of
water in a cubical cavity having finite thickness walls were studied
ll rights reserved.
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remet).
in [15]. Typical velocity and temperature fields describing the
effects of the Rayleigh number and of the walls heat conductivity
were obtained.

The objective of the present study is mathematical simulation
of natural convection and radiation in the gas cavity and heat con-
duction in the walls of an enclosure at the presence of heat source
on the bottom of the cavity and on the assumption of convective-
radiative heat exchange with an environment.

2. Statement of the problem and method of solution

The schematic view of the geometry considered in the present
study is given in Fig. 1.

It is an enclosure bounded by solid walls with a finite thickness
and conductivity. The heat source located on the bottom of the cav-
ity is kept at constant temperature. The convective-radiative heat
exchange with an environment is modeled on one of the external
sides ([ = 0). Other external sides are assumed to be adiabatic.

It is supposed in the analysis that the thermophysical properties
of the solid walls and of the fluid are independent of temperature,
and the flow is laminar. The fluid is Newtonian, viscous, heat-con-
ducting, radiating, and the Boussinesq approximation is valid. The
fluid motion and heat transfer in the cavity are assumed to be
three-dimensional. Radiation heat exchange by heat source and
between the walls is modeled on basis of the optically thick layer
approximation (Rosseland approximation) [16]. In Rosseland
approach [16] the emitting medium can be considered like some
continuum of photons, i.e. it is possible to assume, that on any
element of medium, as well as in case of molecular conduction,
only its neighboring elements directly influence. In such
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Nomenclature

Bi1 = hLx/k1 Biot number for the solid wall
Fo1 ¼ a1t0=L2

x Fourier number for the solid wall
gx acceleration of gravity (x-projection)
gy acceleration of gravity (y-projection)
gz acceleration of gravity (z-projection)
Gr ¼ gzbðThs � T0ÞL3

x=m2 Grashof number
h heat transfer coefficient
k1 thermal conductivity of the solid wall
k2 thermal conductivity of the gas
k2,1 = k2/k1 thermal conductivity ratio
Lx length of the gas cavity along x-axis
N = erL(Ths-T0)3/k Stark number for the gas cavity
N1 = e1rLx(Ths-T0)3/k1 Stark number for the solid wall
Pr = m/a Prandtl number
t time
t0 time scale
T0 initial temperature
Te environmental temperature
Ths heat source temperature
u, v, w velocity components in x, y, z directions
U, V, W dimensionless velocity components in X, Y, Z directions
V0 velocity scale (convection velocity)
[, y, z Cartesian coordinates
X, Y, Z dimensionless Cartesian coordinates

Greek symbols
a thermal diffusivity
b coefficient of volumetric thermal expansion
e specific emissitivity factor for the gas cavity
e1 specific emissitivity factor at solid wall surface X = 0
f = T0/(Ths-T0) temperature parameter
H dimensionless temperature
jk absorption coefficient
m kinematic viscosity
r Stephen-Boltzman constant
s dimensionless time
sk monochromatic optical thickness
wx,wy,wz components of vector potential
w0 vector potential scale
Wx,Wy,Wz dimensionless components of vector potential
xx,xy,xz components of vorticity vector
x0 vorticity vector scale
Xx,Xy,Xz dimensionless components of vorticity vector

Subscripts
i number of the Cartesian basis vector
e environment
hs heat source
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conditions, radiant energy transfer in medium can be likened to
diffusion transfer.

Heat transfer process in the considered area (Fig. 1) is governed
by the system of unsteady three-dimensional convection equations
in the Boussinesq approximation in the gas cavity [2,4,5], where an
item in the energy equation describing radiation is determined on
the basis of Rosseland approximation [16]. The unsteady three-
dimensional energy equation [17] with nonlinear boundary condi-
tions is used for simulation of heat conduction in the solid walls.

The mathematical model is formulated in the dimensionless
variables such as vector potential functions, vorticity vector and
temperature [18–20].

The length of the gas cavity along x-axis is chosen as the scale
distance. For the reduction to the dimensionless form of the equa-
tions system following correlations are used:
Fig. 1. Schematic view of the problem: 1 – walls; 2 – gas; 3 – heat source.
X¼x=Lx;Y¼y=Lx;Z¼z=Lx;s¼ t=t0;U¼u=V0;V¼v=V0;W¼w=V0;

H¼ðT�T0Þ=ðThs�T0Þ;Wx¼wx=w0;Wy¼wy=w0;Wz¼wz=w0;Xx¼xx=x0;

Xy¼xy=x0;Xz¼xz=x0;x0¼V0=Lx;w0¼V0Lx;V0¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gzbðThs�T0ÞLx

p
;

Based on the above-mentioned assumptions, the non-dimen-
sional form of the governing equations for the fluid can be written
as follows:
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Energy equation for the solid walls

@H1

@Fo1
¼ r2H1 ð8Þ

Equations (1)–(8) are subjected to the following initial and
boundary conditions.
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Initial conditions are

WxðX; Y; Z;0Þ ¼ 0;WyðX;Y ; Z; 0Þ ¼ 0;WzðX;Y ; Z;0Þ ¼ 0;
XxðX;Y ; Z; 0Þ ¼ 0;XyðX;Y; Z;0Þ ¼ 0;XzðX; Y; Z; 0Þ ¼ 0;

H(X,Y,Z,0) = 0 except temperature for heat source on which H = 1
during the whole process time.

Boundary conditions are:
� convective-radiative heat exchange with an environment is mod-

eled at the wall X = 0

@H1ðX;Y ; Z; sÞ
@X

¼ Bi1 �H1ðX;Y ; Z; sÞ þ Bi1 �
T0 � Te

Ths � T0
þ Q1;

Q 1 ¼ N1 � ðH1ðX;Y; Z; sÞ þ fÞ4 � Te

Ths � T0

� �4
" #

;X ¼ 0;
Fig. 2. Streamlines W and isotherms H at Y = 0.3, s = 3
� at the rest external walls for the equation (8) heat insulation con-
ditions are set

@H1ðX;Y ; Z; sÞ
@Xi

¼ 0; X1 � X;X2 � Y ;X3 � Z;

� at the solid–fluid interfaces parallel to plane XZ:

Wx ¼
@Wy

@Y
¼ Wz ¼ 0;
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@Y ;

(

� at the solid–fluid interfaces parallel to planeXY:
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H1 ¼ H2;
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(

00, sk = 50, k2,1 = 0.037: Gr = 105 – a, Gr = 107 – b.
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� at the solid–fluid interfaces parallel to plane YZ:

@Wx

@X
¼ Wy ¼ Wz ¼ 0;

H1 ¼ H2;
@H1
@X ¼ k2;1

@H2
@X :

(

Equations (1)–(8) with corresponding initial and boundary condi-
tions has been solved by means of finite differences method [20–22].

The method of solution was tested for different cases, natural
convection [23–25] and conjugate [26] problems. The results were
in good agreement [22] with published data.

3. Results and discussion

Numerical analysis of the boundary value problem (1)–(8) has
been carried out at following dimensionless complexes such as
Gr = 105–107, Pr = 0.7, sk = 50, 100, 1, k2,1 = , 0.037, 0.0037,
Fig. 3. Streamlines W and isotherms H at Z = 0.38, s =
describing the basic modes of convective-radiative heat transfer
in enclosures. Dimensionless defining temperatures were
He = �1, Hhs = 1, H0 = 0.
3.1. Effect of the Grashof number

Streamlines and temperature fields at different values of the
Grashof number at s = 300, Y = 0.3 are presented in Fig. 2. The
direction of gas motion in the gas cavity is indicated by arrows
on streamlines.

Two convective cells are formed in the gas cavity at Y = 0.3 for
Gr = 105 (Fig. 2, a). The reason for the appearance of these cells is
both the heat source located on the bottom of the gas cavity and
convective-radiative heat exchange at external boundary X = 0.
The whirl representing the counter-clockwise gas motion, different
300, sk = 50, k2,1 = 0.037: Gr = 105 – a, Gr = 107 – b.



Fig. 5. Variation of the average Nusselt number versus the Grashof number, the
optical thickness and the thermal conductivity ratio for s = 300.
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from the second circulation, has high flow velocities in the core and
also covers a greater area. The reason for such asymmetry is pene-
tration of the low temperature front from boundary X = 0 deep into
the enclosure. The most intensive cooling of the gas cavity occurs
in the zone of top left trihedral angle where the heat source influ-
ence is insignificant. At the same time interaction of high and low
temperature areas reflecting in the displacement of ‘‘isotherms
coordinate maximum” is visible. For example, ‘‘the coordinate top”
of the isotherm corresponding dimensionless temperature
(H = 0.1) is displaced to the right wall.

The increase in the Grashof number up to Gr = 107 (Fig. 2, b)
leads to essential modification of both streamlines and the tem-
perature field. Two whirls are formed in the gas cavity. The whirls
intensity has considerably increased. Spatial displacement and
change of cores orientation of these convective cells are linked
to the increased role of the buoyancy force. Position of the ascend-
ing and descending flows in the central part and on the peripheral
zones of the gas cavity was conserved. Position of the ascending
convective columns is caused by formation of the thermal plume
above the heat source in its central part. There is more intensive
heating of the top layer of the cavity owing to the increased veloc-
ities of the gas motion. For example, the isotherm corresponding
dimensionless temperature (H = 0.3) limits a greater area on the
top of the cavity in comparison with the central cavity part. The
latter is reflected in some deformation of the isotherm corre-
sponding dimensionless temperature (H = �0.05). This isotherm
verges in the cavity to the solid wall surface. At the same time iso-
therms of the thermal plume near walls illustrate the presence of
the descending convective flows.

Streamlines and temperature fields at Z = 0.38 are presented in
Fig. 3.

The Grashof number ranging from 105 to 107 is reflected (Fig. 3)
on the increase in the circulation velocities of the convective cells.
The formation of the 8th-cellular steady hydrodynamic structure is
observed. The temperature field is essentially changed. The ther-
mal plume is formed in the centre of the gas cavity. There is the
heating of the cavity from the thermal plume in a radial direction.
Formation of original ‘‘thermal petals” in the zones of trihedral
angles of the cavity is linked to the hydrodynamic structures of
heat transfer process, namely with formation of the backward
flows in these zones.
Fig. 4. Temperature profiles at s = 300, sk = 50, k
The temperature profiles at Y = 0.3, Z = 0.38, s = 300 and at dif-
ferent values of the Grashof number are shown in Fig. 4.

Fig. 4 shows the effect of the buoyancy force on the temperature
field in the gas cavity. The increase in the Grashof number
105
6 Gr 6 106 leads to monotonous increase in the temperature

in the central part of the cavity where there is the thermal plume.
The essential change of the temperature profile at Gr = 107 is linked
to the increase in the gas motion velocities. Fall in the local tem-
perature near the solid wall surfaces (0.08 < X < 0.25,
0.9 < X < 1.08) at Z = 0.38 (Fig. 4, a) is caused by both the descend-
ing cold gas flows formation, and the energy redistribution along
the vertical line of the gas cavity (Fig. 4, b). The high temperature
at 0.3 < X < 0.8 is explained by presence of the thermal plume in
the centre of the cavity above the heater. Thus at Z = 0.85 essential
2,1 = 0.037, Y = 0.3: Z = 0.38 – a, Z = 0.85 – b.
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increase in the temperature at Gr = 107 is noticeable. The latter
characterizes the increased value of the buoyancy force. The degree
of the temperature pulldown (Fig. 4, a) at Gr = 107, 0.08 < X < 0.25 is
higher in comparison with the region 0.9 < X < 1.08. This fact is
caused by presence of the additional mechanism of the flow cool-
ing at the solid wall 0 6 X 6 0.08. The most intensive cooling of the
wall 0 6 X 6 0.08 is observed in the upper part of the solution re-
gion where influence of the heat source is sufficiently small
(Fig. 4, b).

The analysis of the Grashof number influence on the generalized
heat transfer coefficient (the average Nusselt number Nuavg ¼R 1:08

0:08

R 1:08
0:08

@H
@Z

�� ��
Z¼0:15dXdY) on the heat source surface has been car-

ried out (Fig. 5).
The presented graphic dependences of the average Nusselt

number as a function of the Grashof number evidently show the
Fig. 6. The dynamics of streamlines W and temperature fields H at
typical increase in the heat transfer intensity on the heat source
surface at the Grashof number ranging 105

6 Gr 6 107. The in-
crease in a role of the buoyancy force in comparison with the inter-
nal friction force leads to the heat transfer intensification on the
heater surface. The reason for this fact is both the increase in the
motion velocities and more essential cooling of the descending
gas flows. The latter leads to the significant heat sink from the heat
source surface.

3.2. Effect of the transient factor

The transient factor in the conjugate heat transfer problems
plays an essential role [20,22] as it reflects not only dynamics of
the velocity and temperature fields in the gas cavity, caused by
formation, evolution and dissipation of the vortex structures from
Y = 0.6 for Gr = 106, sk = 50, k2,1 = 0.037: s = 60 – a, s = 300– b.
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an initial quiescent state, but also it characterizes the thermal slug-
gishness of the solid walls in conditions of the environment influ-
ence. At the same time the advantage of such statement is
definition of the temperature field at the solid–fluid interface on
the basis of conservation laws without additional empirical data,
for example, for the heat transfer coefficient. In turn the approach
based on use of empirical heat transfer coefficients does not allow
considering the transient factor as these coefficients are time
functions.

The dynamics of the streamlines formation and temperature
fields formation at Y = 0.6 for Gr = 106 are shown in Fig. 6.

There are two convective cells of small intensity in the gas cavity
at s = 60 (Fig. 6, a). This fact is explained by the initial stage of the
flow evolution. The temperature distribution is already non-uni-
formly. There is an intensive heating of the bottom of the cavity,
Fig. 7. The dynamics of streamlines W and temperature fields H at
but the thermal plume above the heat source hasn’t yet formed. At
the same time the cooling of the solid wall 0 6 X 6 0.08 and, accord-
ingly, the skew isotherms distribution in the left and right solid walls
though thermal characteristics of these walls are identical is visible.

The increase in the time up to s = 300 leads to the increase in
the velocities of the gas circulation. The cores of the convective
cells are displaced in the geometrical middle of the areas sur-
rounded by each whirl. The intensity of a motion in the left whirl
is greater in comparison with another whirl. This fact can be
explained as the low temperature front has reached the gas cavity
in a zone of the left top angle. Formation of the thermal plume in
the central part above the heat source is appreciable. The heating
of the solid walls proceeds.

Evolution of the vortex structure and the temperature field at
Y = 0.3 for Gr = 107 is presented in Fig. 7.
Y = 0.3 for Gr = 107, sk = 50, k2,1 = 0.037: s = 180 – a, s = 240 – b.



Fig. 9. Variation of the average Nusselt number with the dimensionless time at
different values of the Grashof number and heat conductivity ratio.
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The increase in the dimensionless time results both in displace-
ment of the convective cells cores and in change of the hydrody-
namic structures orientation different from Fig. 6. The dynamics of
the temperature field differ from the mode for Gr = 106. The thermal
plume, contributed the increase in the temperature in the cavity top
layer, is formed at the heat transfer mode for Gr = 107 at s = 240.

The temperature profiles at Y = Z = 0.6 for Gr = 107 depending on
time points are presented in Fig. 8. The increase in the dimension-
less time leads to the increment in the temperature both in the gas
cavity and in the solid wall 1.08 6 X 6 1.16. There is fall in the tem-
perature at X = 0 and, accordingly, cooling of the solid wall such as
0 6 X 6 0.08 as the ambient temperature is below initial tempera-
ture of the solution region. Appearance of the local nonmonotonic
zones at the solid walls surface at s = 240 is linked to an intensive
motion of the descending flows.

The graphic dependences of the generalized heat transfer coef-
ficient on the heat source surface versus dimensionless time and
the Grashof number are presented in Fig. 9. The average Nusselt
number Nuavg decreases eventually at the fixed value of the heat
conductivity ratio for Gr = 105, that is linked to heating the area
near to the heater. Nonmonotonic change of Nuavg for Gr = 107, pos-
sibly, is linked to the loss of stability of both the flow field and the
temperature field, and as consequence, leads to formation of the
transient laminar-turbulent mode.

3.3. Effect of the optical thickness

Taking radiation on the basis of Rosseland approach into
account allows to estimate effect of this heat transfer mechanism
due to a variation of the medium optical thickness sk = jkLx.

The convective heat transfer mode without radiation mecha-
nism is a limiting case at sk ?1 if to judge by the equation (7).
Thus, finite values of the optical thickness characterize presence
of the monochromatic radiation. The increase in sk from 50 to 1
leads to the temperature pulldown in the gas cavity
( max

06X61:16
jHsk¼50 �Hsk¼1j ¼ 0:02;X ¼ 0:6, Fig. 10), and also it is

reflected on increase in the generalized heat transfer coefficient
at the heat source surface (Fig. 5).
Fig. 8. The temperature profiles at Y = Z = 0.6 for Gr = 107, sk = 50, k2,1 = 0.037.
3.4. Effect of the heat conductivity ratio

The thermal conductivity ratio characterizes the heat exchange
conditions on the solid–fluid interface at analysis of the conjugate
heat transfer. Accordingly, the variation of this parameter enables
to define a range of change of the required characteristics.

The decrease in the thermal conductivity ratio (Fig. 11) leads to
an intensification of the heat transfer in the solid walls, that is
reflected on the increment in the temperature of the gas cavity.
At the same time the average Nusselt number on the heat source
surface decreases (Figs. 5 and 9).
Fig. 10. The temperature profiles at X = Z = 0.6 for Gr = 106, k2,1 = 0.037 depending
on the optical thickness.



Fig. 11. The temperature profiles at X = Z = 0.6 for Gr = 107 for, sk = 50 depending on
the heat conductivity ratio.
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4. Conclusions

Mathematical simulation of the conjugate heat transfer in an
enclosure having finite thickness walls in the presence of radiative
heat transfer in a gas cavity has been carried out. The environmental
effect has been considered in conditions of convective-radiative heat
exchange on one of external boundaries of the solution region. Typ-
ical distributions of streamlines and temperature fields in wide en-
ough range of defining parameters 105

6 Gr 6 107, Pr = 0.7 have
been obtained. The influence of the defining parameters such as
the Grashof number, the transient factor, the optical thickness and
the heat conductivity ratio on formation of thermo-hydrodynamic
modes has been analysed. It is determined, that taking into account
the radiative heat transfer leads to the temperature increase in the
gas cavity at 0 < s < 200 on the average on 11%. The further change
of the dimensionless time leads to the temperature evenning
(Fig. 10). The scopes of the nonlinear environmental effect, owing
to conduction in the solid walls of the enclosure (Figs. 2, 3, 6 and 7)
have been determined. It should be noted that the decrease in the
heat conductivity ratio leads to reduction of the average Nusselt
number on the heat source surface (Figs. 5 and 9).
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